If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
2*x < 0
x < 0
2*x < 0
2*x < 0
2*x+0 < 0 // - 0
2*x < 0 // : 2
x < 0/2
x < 0
x < 0
x in <0:+oo)
(2*x)^(1/2)-(7*x^(1/4))+4 = 0
(2*x)^(1/2)-7*x^(1/4)+4 = 0
2^(1/2)*x^(1/2)-7*x^(1/4)+4 = 0
t_1 = x^(1/4)
2^(1/2)*t_1^2-7*t_1^1+4 = 0
2^(1/2)*t_1^2-7*t_1+4 = 0
DELTA = (-7)^2-(4*4*2^(1/2))
DELTA = 49-16*2^(1/2)
DELTA = 26.37258304
DELTA > 0
t_1 = ((49-16*2^(1/2))^(1/2)+7)/(2*2^(1/2)) or t_1 = (7-(49-16*2^(1/2))^(1/2))/(2*2^(1/2))
t_1 = (7-(49-16*2^(1/2))^(1/2))/(2*2^(1/2))
x^(1/4)-((7-(49-16*2^(1/2))^(1/2))/(2*2^(1/2))) = 0
1*x^(1/4) = (7-(49-16*2^(1/2))^(1/2))/(2*2^(1/2)) // : 1
x^(1/4) = (7-(49-16*2^(1/2))^(1/2))/(2*2^(1/2))
x^(1/4) = (7-(49-16*2^(1/2))^(1/2))/(2*2^(1/2)) // ^ 4
x = ((7-(49-16*2^(1/2))^(1/2))^4)/64
t_1 = ((49-16*2^(1/2))^(1/2)+7)/(2*2^(1/2))
x^(1/4)-(((49-16*2^(1/2))^(1/2)+7)/(2*2^(1/2))) = 0
1*x^(1/4) = ((49-16*2^(1/2))^(1/2)+7)/(2*2^(1/2)) // : 1
x^(1/4) = ((49-16*2^(1/2))^(1/2)+7)/(2*2^(1/2))
x^(1/4) = ((49-16*2^(1/2))^(1/2)+7)/(2*2^(1/2)) // ^ 4
x = (((49-16*2^(1/2))^(1/2)+7)^4)/64
x in { ((7-(49-16*2^(1/2))^(1/2))^4)/64, (((49-16*2^(1/2))^(1/2)+7)^4)/64 }
| -2x+1/2=-15/2 | | 13x-7(2x-5)=-11 | | -6=y^5+4 | | -p-24=8 | | -13-12x=-49 | | -13(a+4)=7(a+8) | | 6(4x-1)-2(x+1)=9(x+1) | | 25-8t/5 | | w+i=s/c | | 360=x+x-3+x+8+x-5 | | -4(3x+2)=18 | | 1/3x=57 | | -2x+1/2=-11/2 | | -.05x+15=10 | | 8g-12=23 | | -4=12-2w | | +22x(-1.6)= | | 4/5+5/12/1/4-2/3 | | 14-42= | | (y-8)-(y+4)=2y | | -15x=-4x+5 | | -p-24=28 | | (9x-2)-(-4x+6)= | | 2(x+4)+6=14 | | -9(x-4)-(x+1)=1 | | t/5+9=17 | | -2x+1=-13/2 | | 4x-4=2x | | 3(1)+2-1=5(1)-2(1)+1 | | k=1/2*.035*3.386*3.386 | | 1/3x=51 | | 8(2)+3=2(2) |